Brazil
Learning to Orient Surfaces by Self-supervised Spherical CNNs (Supplementary Material), Federico Stella 1, Luciano Silva
In this section, we study how the data augmentation carried out while training on local surface patches improves the robustness of Compass against self-occlusions and missing parts. To this end, we run an ablation experiment adopting the same training pipeline explained in the main paper at Section 3.2, without randomly removing points from the input cloud. As done in the main paper, we trained the model on 3DMatch and test it on 3DMatch, ETH, and Stanford Views. We compare Compass against its ablated version in terms of repeatability of the LRFs. Results for 3DMatch are shown in Table 1: the performance gain achieved by Compass when deploying the proposed data augmentation validates its importance.
Learning to Orient Surfaces by Self-supervised Spherical CNNs, Federico Stella 1, Luciano Silva
Defining and reliably finding a canonical orientation for 3D surfaces is key to many Computer Vision and Robotics applications. This task is commonly addressed by handcrafted algorithms exploiting geometric cues deemed as distinctive and robust by the designer. Yet, one might conjecture that humans learn the notion of the inherent orientation of 3D objects from experience and that machines may do so alike. In this work, we show the feasibility of learning a robust canonical orientation for surfaces represented as point clouds. Based on the observation that the quintessential property of a canonical orientation is equivariance to 3D rotations, we propose to employ Spherical CNNs, a recently introduced machinery that can learn equivariant representations defined on the Special Orthogonal group SO(3). Specifically, spherical correlations compute feature maps whose elements define 3D rotations. Our method learns such feature maps from raw data by a self-supervised training procedure and robustly selects a rotation to transform the input point cloud into a learned canonical orientation. Thereby, we realize the first end-to-end learning approach to define and extract the canonical orientation of 3D shapes, which we aptly dub Compass. Experiments on several public datasets prove its effectiveness at orienting local surface patches as well as whole objects.
Unifying and extending Diffusion Models through PDEs for solving Inverse Problems
Dasgupta, Agnimitra, da Cunha, Alexsander Marciano, Fardisi, Ali, Aminy, Mehrnegar, Binder, Brianna, Shaddy, Bryan, Oberai, Assad A
Diffusion models have emerged as powerful generative tools with applications in computer vision and scientific machine learning (SciML), where they have been used to solve large-scale probabilistic inverse problems. Traditionally, these models have been derived using principles of variational inference, denoising, statistical signal processing, and stochastic differential equations. In contrast to the conventional presentation, in this study we derive diffusion models using ideas from linear partial differential equations and demonstrate that this approach has several benefits that include a constructive derivation of the forward and reverse processes, a unified derivation of multiple formulations and sampling strategies, and the discovery of a new class of models. We also apply the conditional version of these models to solving canonical conditional density estimation problems and challenging inverse problems. These problems help establish benchmarks for systematically quantifying the performance of different formulations and sampling strategies in this study, and for future studies. Finally, we identify and implement a mechanism through which a single diffusion model can be applied to measurements obtained from multiple measurement operators. Taken together, the contents of this manuscript provide a new understanding and several new directions in the application of diffusion models to solving physics-based inverse problems.
Imbalanced malware classification: an approach based on dynamic classifier selection
Souza, J. V. S., Vieira, C. B., Cavalcanti, G. D. C., Cruz, R. M. O.
In recent years, the rise of cyber threats has emphasized the need for robust malware detection systems, especially on mobile devices. Malware, which targets vulnerabilities in devices and user data, represents a substantial security risk. A significant challenge in malware detection is the imbalance in datasets, where most applications are benign, with only a small fraction posing a threat. This study addresses the often-overlooked issue of class imbalance in malware detection by evaluating various machine learning strategies for detecting malware in Android applications. We assess monolithic classifiers and ensemble methods, focusing on dynamic selection algorithms, which have shown superior performance compared to traditional approaches. In contrast to balancing strategies performed on the whole dataset, we propose a balancing procedure that works individually for each classifier in the pool. Our empirical analysis demonstrates that the KNOP algorithm obtained the best results using a pool of Random Forest. Additionally, an instance hardness assessment revealed that balancing reduces the difficulty of the minority class and enhances the detection of the minority class (malware). The code used for the experiments is available at https://github.com/jvss2/Machine-Learning-Empirical-Evaluation.
Comparative Analysis of Deepfake Detection Models: New Approaches and Perspectives
The growing threat posed by deepfake videos, capable of manipulating realities and disseminating misinformation, drives the urgent need for effective detection methods. This work investigates and compares different approaches for identifying deepfakes, focusing on the GenConViT model and its performance relative to other architectures present in the DeepfakeBenchmark. To contextualize the research, the social and legal impacts of deepfakes are addressed, as well as the technical fundamentals of their creation and detection, including digital image processing, machine learning, and artificial neural networks, with emphasis on Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), and Transformers. The performance evaluation of the models was conducted using relevant metrics and new datasets established in the literature, such as WildDeep-fake and DeepSpeak, aiming to identify the most effective tools in the battle against misinformation and media manipulation. The obtained results indicated that GenConViT, after fine-tuning, exhibited superior performance in terms of accuracy (93.82%) and generalization capacity, surpassing other architectures in the DeepfakeBenchmark on the DeepSpeak dataset. This study contributes to the advancement of deepfake detection techniques, offering contributions to the development of more robust and effective solutions against the dissemination of false information.
A Synthetic Dataset for Personal Attribute Inference Hanna Yukhymenko
Recently powerful Large Language Models (LLMs) have become easily accessible to hundreds of millions of users world-wide. However, their strong capabilities and vast world knowledge do not come without associated privacy risks. In this work, we focus on the emerging privacy threat LLMs pose - the ability to accurately infer personal information from online texts. Despite the growing importance of LLM-based author profiling, research in this area has been hampered by a lack of suitable public datasets, largely due to ethical and privacy concerns associated with real personal data. We take two steps to address this problem: (i) we construct a simulation framework for the popular social media platform Reddit using LLM agents seeded with synthetic personal profiles; (ii) using this framework, we generate SynthPAI, a diverse synthetic dataset of over 7800 comments manually labeled for personal attributes. We validate our dataset with a human study showing that humans barely outperform random guessing on the task of distinguishing our synthetic comments from real ones. Further, we verify that our dataset enables meaningful personal attribute inference research by showing across 18 state-of-theart LLMs that our synthetic comments allow us to draw the same conclusions as real-world data. Combined, our experimental results, dataset and pipeline form a strong basis for future privacy-preserving research geared towards understanding and mitigating inference-based privacy threats that LLMs pose.
SMART: Scalable Multi-agent Real-time Simulation via Next-token Prediction
Data-driven autonomous driving motion generation tasks are frequently impacted by the limitations of dataset size and the domain gap between datasets, which precludes their extensive application in real-world scenarios. To address this issue, we introduce SMART, a novel autonomous driving motion generation paradigm that models vectorized map and agent trajectory data into discrete sequence tokens. These tokens are then processed through a decoder-only transformer architecture to train for the next token prediction task across spatial-temporal series. This GPT-style method allows the model to learn the motion distribution in real driving scenarios. SMART achieves state-of-the-art performance across most of the metrics on the generative Sim Agents challenge, ranking 1st on the leaderboards of Waymo Open Motion Dataset (WOMD), demonstrating remarkable inference speed. Moreover, SMART represents the generative model in the autonomous driving motion domain, exhibiting zero-shot generalization capabilities: Using only the NuPlan dataset for training and WOMD for validation, SMART achieved a competitive score of 0.72 on the Sim Agents challenge. Lastly, we have collected over 1 billion motion tokens from multiple datasets, validating the model's scalability. These results suggest that SMART has initially emulated two important properties: scalability and zero-shot generalization, and preliminarily meets the needs of large-scale real-time simulation applications. We have released all the code to promote the exploration of models for motion generation in the autonomous driving field.
ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation Cédric Rommel 1 Victor Letzelter 1,3
We propose ManiPose, a manifold-constrained multi-hypothesis model for humanpose 2D-to-3D lifting. We provide theoretical and empirical evidence that, due to the depth ambiguity inherent to monocular 3D human pose estimation, traditional regression models suffer from pose-topology consistency issues, which standard evaluation metrics (MPJPE, P-MPJPE and PCK) fail to assess. ManiPose addresses depth ambiguity by proposing multiple candidate 3D poses for each 2D input, each with its estimated plausibility.
Exact recovery and Bregman hard clustering of node-attributed Stochastic Block Model
Network clustering tackles the problem of identifying sets of nodes (communities) that have similar connection patterns. However, in many scenarios, nodes also have attributes that are correlated with the clustering structure. Thus, network information (edges) and node information (attributes) can be jointly leveraged to design high-performance clustering algorithms. Under a general model for the network and node attributes, this work establishes an information-theoretic criterion for the exact recovery of community labels and characterizes a phase transition determined by the Chernoff-Hellinger divergence of the model. The criterion shows how network and attribute information can be exchanged in order to have exact recovery (e.g., more reliable network information requires less reliable attribute information). This work also presents an iterative clustering algorithm that maximizes the joint likelihood, assuming that the probability distribution of network interactions and node attributes belong to exponential families. This covers a broad range of possible interactions (e.g., edges with weights) and attributes (e.g., non-Gaussian models), as well as sparse networks, while also exploring the connection between exponential families and Bregman divergences. Extensive numerical experiments using synthetic data indicate that the proposed algorithm outperforms classic algorithms that leverage only network or only attribute information as well as state-of-the-art algorithms that also leverage both sources of information. The contributions of this work provide insights into the fundamental limits and practical techniques for inferring community labels on node-attributed networks.
Drift-Resilient TabPFN: In-Context Learning Temporal Distribution Shifts on Tabular Data
Kai Helli, David Schnurr, Noah Hollmann, Samuel Müller, Frank Hutter
While most ML models expect independent and identically distributed data, this assumption is often violated in real-world scenarios due to distribution shifts, resulting in the degradation of machine learning model performance. Until now, no tabular method has consistently outperformed classical supervised learning, which ignores these shifts. To address temporal distribution shifts, we present Drift-Resilient TabPFN, a fresh approach based on In-Context Learning with a Prior-Data Fitted Network that learns the learning algorithm itself: it accepts the entire training dataset as input and makes predictions on the test set in a single forward pass. Specifically, it learns to approximate Bayesian inference on synthetic datasets drawn from a prior that specifies the model's inductive bias. This prior is based on structural causal models (SCM), which gradually shift over time.